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DIGITAL IMAGE FILTERING 
 

By 
Fred Weinhaus 

 
 
Traditional (Static Weight) Convolution 
 
One method of filtering an image is to apply a convolution 
operation to the image to achieve: blurring, sharpening, 
edge extraction or noise removal. 
 
The action of a convolution is simply to multiply the 
pixels in the neighborhood of each pixel in the image by a 
set of static weights and then replace the pixel by the sum 
of the product. In order to prevent the overall brightness 
of the image from changing, the weights are either designed 
to sum to unity or the convolution is followed by a 
normalization operation, which divides the result by the 
sum of the weights. In simple terms, perform a weighted 
average in the neighborhood of each pixel and replace the 
pixel’s value by the average. 
 
Thus, the filter is generated by providing a set of weights 
to apply to the corresponding pixels in a given size 
neighborhood. The set of weights make up what is called the 
convolution kernel and is typically represented in a table 
or matrix-like form, where the position in the table or 
matrix corresponds to the appropriate pixel in the 
neighborhood. Such a convolution kernel (or filter) is 
typically a square of odd dimensions so that, when applied, 
the resulting image does not shift a half pixel relative to 
the original image. The general form for a 3x3 convolution 
kernel looks as follows: 
 

  

€ 

w1 w2 w3
w4 w5 w6
w7 w8 w8

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
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or if the weights are not designed to sum to unity, then as  
 

  

€ 

1
sumw

w1 w2 w3
w4 w5 w6
w7 w8 w8

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

 
where sumw=(w1+w2+w3+w4+w5+w6+w7+w8+w9). 
 
In systems such as ImageMagick, normalization is done 
automatically as part of the convolution. Thus, the 
multiply by 1/sumw is not needed. But note that this factor 
must be taken into account if this filter is mixed with 
other filters to generate a more complex convolution, as 
will be done later.  
 
In ImageMagick, convolution kernels (filters) are 
represented as 1D comma separate lists and are created from 
the 2D kernel by appending each row to the end of the 
previous one. Thus in ImageMagick, the convolution kernel 
would be expressed as  
 

Convert infile –convolve "w1,w2,w3,w4,w5,w6,w7,w8,w9" outfile 
 
 
Uniform Weight Convolutions 
 
The simplest convolution kernel or filter is of size 3x3 
with equal weights and is represented as follows: 
 

  

€ 

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

  = 

€ 

1
9

 

  

€ 

1 1 1
1 1 1
1 1 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 = low pass filter. 

 
This filter produces a simple average (or arithmetic mean)  
of the 9 nearest neighbors of each pixel in the image. It 
is one of a class of what are known as low pass filters. 
They pass low frequencies in the image or equivalently pass 
long wavelengths in the image, i.e. slow variations in 
image intensity. Conversely, they remove short wavelengths 
in the image, which correspond to abrupt changes in image 
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intensity, i.e. edges. Thus we get blurring. Also, because 
it is replacing each pixel with an average of the pixels in 
its local neighborhood, one can understand why it tends to 
blur the image. Blurring is typical of low pass filters. 
 
The opposite of a low pass filter is a high pass filter. It 
passes only short wavelengths, i.e. where there are abrupt 
changes in intensity and removes long wavelengths, i.e. 
where the image intensity is varying slowly. Thus when 
applied to an image, it shows only the edges in the image. 
 
High pass filtering of an image can be achieved by the 
application of a low pass filter to the image and 
subsequently subtraction of the low pass filtered result 
from the image. 
 
In abbreviated terms, this is H = I – L, where H = high 
pass filtered image, I = original image and L = low pass 
filtered image. We can express this in terms of the filters 
(convolution kernels) by recognizing that this equation is 
equivalent to the following: 
 

h  

€ 

⊗I = i  

€ 

⊗I - l  

€ 

⊗I 
 
where h, i and l are the high pass, identity and low pass 
filter (convolution kernels), respectively and   

€ 

⊗ means 
convolution (i.e. multiply each neighborhood pixel by it 
corresponding weight and sum up the products). 
 
The identity filter is that convolution kernel which when 
applied to the image leaves the image unchanged. Therefore,  
 

i = 
  

€ 

0 0 0
0 1 0
0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 = identity kernel. 
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Thus if we combine the identity and low pass filter kernels 
above as specified, we get 
 

h = 
  

€ 

0 0 0
0 1 0
0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

  -  

€ 

1
9

  

€ 

1 1 1
1 1 1
1 1 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 = high pass filter. 

 
 
After subtraction of terms, this becomes 
 

h = 

€ 

1
9

  

€ 

−1 −1 −1
−1 8 −1
−1 −1 −1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 = high pass filter, 

 
where again we can ignore the one-ninth factor, since the 
sum of weights is actually zero. This property that the 
weights sum to zero is typical of pure high pass filters. 
 
Now, if we want to sharpen the image rather than just 
extract edges, we can do so by blending or mixing the 
original image with the high pass filtered image. In 
abbreviated form, this is S = (1-f)*I + f*H, where S is the 
sharpened image, I is the original image, H is the high 
pass filtered image and f is a fraction between 0 and 1. 
When f=0, S=I and when f=1, S=H. A typcal choice for 
sharpening is to use something inbetween, say, f=0.5. 
 
In terms of the convolution kernel, this becomes  
 

s  

€ 

⊗I = (1-f)*i  

€ 

⊗I + f*h  

€ 

⊗I 
 
or 
 

s = (1-f)*I + f*h 
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For the high pass filter above, this becomes 
 

s = (1-f)
  

€ 

0 0 0
0 1 0
0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 +  f 

€ 

1
9

 

  

€ 

−1 −1 −1
−1 8 −1
−1 −1 −1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

 
which produces 
 

s = 

€ 

1
9

 

  

€ 

− f − f − f
− f (9 − f ) − f
− f − f − f

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

 
But we can also derive this by recalling that H = I – L. 
Thus the equation, S = (1-f)*I + f*H, becomes  
S = (1-f)*I + f*(I – L). By rearranging, it can be 
expressed as S = I – f*L, which is much simpler. 
 
If we now express this in terms of the filters, it becomes 
s*I = i*I – f*l*I, so that the filter is 
 

s = 
  

€ 

0 0 0
0 1 0
0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

  -  f * 

€ 

1
9

  

€ 

1 1 1
1 1 1
1 1 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

 
which again produces 
 

s = 

€ 

1
9

 

  

€ 

− f − f − f
− f (9 − f ) − f
− f − f − f

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
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An example using the above 3x3 uniform weight (averaging) 
convolution kernels as filters follows: 
 

Original Image        Low Pass Filtered Image 

         
 

Sharpened Image (f = 0.5)    High Pass Filtered Image 

          
 
For filter or kernel size 5x5, the basic filters become 
 

 

i = 

  

€ 

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
and  
 

l = 

€ 

1
25

  

€ 

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
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so that  
 

h = 

€ 

1
25

 

  

€ 

−1 −1 −1 −1 −1
−1 −1 −1 −1 −1
−1 −1 24 −1 −1
−1 −1 −1 −1 −1
−1 −1 −1 −1 −1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
The result of using this larger filter will be that the low 
pass filtered image is blurrier than for the 3x3 case and 
the high pass filtered image will have thicker edges. 
 
 
Non-Uniform (Binomial) Weight Convolutions 
 
Another example of a low pass filter is the binomial 
filter. It is called that because its weights are formed 
from the coefficients of the binomial series. Pascal’s 
Triangle is a good way to visualize and extract these 
coefficients.  
 
 

    1 
                           1   1 
                         1   2   1 
                       1   3   3   1 
                     1   4   6   4   1 
                   1   5  10   10  5   1 
                 1   6  15  20   15  6   1 
               1   7  21  35   35  21  7   1 
 
 
The 1D coefficients are just the rows. To construct each 
successive row, you sum the two numbers in the row 
immediately above the position you want. 
 
See http://en.wikipedia.org/wiki/Pascal%27s_triangle for 
more details. 
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The first two odd sized series are: 
 

1 2 1 
 

1 4 6 4 6 
 
These form the basis for the 3x3 and 5x5 binomial filters. 
 
Unlike the averaging filter above whose weights are all the 
same and have a level profile, the weights of the binomial 
filter are biggest at the center and taper down towards the 
outer areas of the neighborhood. The profile of the 
binomial filter has a bell shape and looks as follows: 
 

 
 
To create the 2D low pass binomial filter, you form the 
outer product of the row with its corresponding column. In 
simple terms take the row and multiply each element in it 
by the first value in the row. Then take the row and 
multiply each element in it by the second value in the row. 
Repeat this until you have multiplied the row by every 
element in the row. Then stack each of these resulting rows 
to make a square table or matrix. For example, the 3x3 
kernel is generated as  
 

  

€ 

1∗ 1 2 1[ ] 
 

  

€ 

2 ∗ 1 2 1[ ] 
 

  

€ 

1∗ 1 2 1[ ] 
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When multiplied and stacked, it becomes 
 

l = 

€ 

1
16

  

€ 

1 2 1
2 4 2
1 2 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

 
Similarly, the 5x5 low pass binomial filter becomes 
 

l = 

€ 

1
256

 

  

€ 

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
 
To get the high pass filter, we use the same formula as 
before, namely, h = i – l. Thus for the 3x3 case, we get 
 

h = 

€ 

1
16

 

  

€ 

−1 −2 −1
−2 12 −2
−1 −2 −1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

 
and the sharpening filter becomes 
 

s = 

€ 

1
16

 

  

€ 

− f −2 f − f
−2 f (16 − f ) −2 f
− f −2 f − f

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
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An example using the above 3x3 binomial convolution kernels 
as filters is shown below. Results are not too much 
different than those for the 3x3 averaging filter. 
 

Original Image        Low Pass Filtered Image 

         
 

Sharpened Image (f = 0.5    High Pass Filtered Image 

         
 
 
 
Derivative Convolutions 
 
Another class of high pass filters is generated from the 
digital equivalents of the mathematical derivative 
operation. These include the Gradient and the Laplacian 
filters. 
 
From calculus, if one knows the value of a function, 

€ 

P(x,y)  
at some location (x,y) and want to know its value at a very 
close by point which differs from (x,y) by   

€ 

Δx,Δy( ), one can 
use the Taylor Expansion to compute it. This is expressed 
to second order as: 
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€ 

P(x ± Δx,y ± Δy) = P(x,y) ± Δx dP
dx

± Δy dP
dy

+ 0.5(Δx)2 d
2P
dx 2

+ 0.5(Δy)2 d
2P
dy 2

 

 
 

This can be interpreted as follows: 
 

€ 

P(x,y)  is the value of a pixel in the digital picture (image) 
and x and y are the horizontal and vertical coordinates of 
the pixel.  
 
  

€ 

P(x ± Δx,y ± Δy) is some pixel in the local neighborhood of the 
center pixel 

€ 

P(x,y) and   

€ 

Δx,Δy( ) are the integer offsets of the 
neighborhood pixel from the center pixel. In a 3x3 
neighborhood, the offsets are   

€ 

±1. In a 5x5 neighborhood, 
the closest pixels will have offsets of   

€ 

±1 and the outer 
pixels in the neighborhood will have offsets of   

€ 

±2. 
 
The terms 

€ 

dP
dx

 and 

€ 

dP
dy

 are the x and y first derivative 

filtered images and the terms 

€ 

d2P
dx 2

 and 

€ 

d2P
dy 2

 are the x and y 

second derivative filtered images.                                 
 
The definitions for the Gradient and Laplacian filtered 
images are as follows: 
 

Gradient (Magnitude) Filtered Image = 
  

€ 

dP
dx

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

+
dP
dy

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

 

 
Laplacian Filtered Image = 

  

€ 

d2P
dx 2

+
d2P
dy 2

 

 
To compute the Gradient filtered image, we use only the 
first order terms, so that the Taylor Expansion becomes: 
 

  

€ 

P(x ± Δx,y ± Δy) = P(x,y) ± Δx dP
dx

± Δy dP
dy
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Lets look at the 8 pixels in the neighborhood of 

€ 

P(x,y). 
 
The offsets for each pixel in the neighborhood can be 
expressed in table or matrix form as: 
 

  

€ 

±Δx,±Δy( )  = 

  

€ 

(−1,+1) (0,+1) (+1,+1)
(−1,0) (0,0) (+1,0)
(−1,−1) (0,−1) (+1,−1)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

 
So we can now express the values for each of neighborhood 
pixels in terms of the center pixel working top to bottom 
and left to right (i.e. column-by-column) as: 
 

  

€ 

P(x −1,y +1) = P(x,y) − dP
dx

+
dP
dy

 

 

  

€ 

P(x −1,y) = P(x,y) − dP
dx
 

 

  

€ 

P(x −1,y −1) = P(x,y) − dP
dx

−
dP
dy

 

 

  

€ 

P(x,y +1) = P(x,y) +
dP
dy

 

 
  

€ 

P(x,y) = P(x,y)  
 

  

€ 

P(x,y −1) = P(x,y) − dP
dy

 

 

  

€ 

P(x +1,y +1) = P(x,y) +
dP
dx

+
dP
dy

 

 

  

€ 

P(x +1,y) = P(x,y) +
dP
dx
 

 

  

€ 

P(x +1,y −1) = P(x,y) +
dP
dx

−
dP
dy

€ 
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Lets start by looking at the middle column (equations 4, 5 
and 6 above). We note that none of them include 

€ 

dP
dx

. 

 
Next look at the left column of neighborhood pixels 
(equations 1, 2 and 3 above). If we add these up, we get 
 

Left column of 3 pixels = 
  

€ 

3P(x,y) − dP
dx

 

 
Similarly for the right column of 3 pixels (equations 7, 8 
and 9 above), we get 
 

Right column of 3 pixels = 
  

€ 

3P(x,y) +
dP
dx

 

 
If we subtract the left column from the right column we get 
 

(Right column of pixels) – (Left column of pixels) = 

€ 

dP
dx

 

 
This equation tells us that the left and right columns are 
the only pixels that make up this derivative. Thus the 
pixels in the center column must each have a value of zero 
as none of these pixels contribute to the derivative.  
 
This equation along with the equation for the left column 
of pixels tells us that the sign of the left column must be 
negative. Similarly, this equation along with the equation 
for the right column of pixels tells us that the sign of 
the right column must be positive. 
 
Nothing in these equations tells us what exact values to 
use for the weights of the left and right columns, except 
they must be equal and opposite sign across a row. The 
simplest assumption is to weight them equally. 
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Consequently, the x first derivative filter can be 
expressed as 
 

€ 

d
dx

=

−1 0 1
−1 0 1
−1 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 

 
In a similar analysis, the y first derivative filter 
becomes 
 

€ 

d
dy

=

1 1 1
0 0 0
−1 −1 −1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 

 
These are the two (component) first derivative filters. The 
x derivative extracts vertical edges and the y derivative 
extracts horizontal edges. These equations are known as 
Prewitt’s form. 
 
As we are free choose weights within columns of the x 
derivative and rows of the y derivative, we could use 
binomial coefficients instead of uniform coefficients. 
Doing this produces Sobel’s form, namely, 
 

  

€ 

d
dx

=

−1 0 1
−2 0 2
−1 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

 
and  
 

  

€ 

d
dy

=

1 2 1
0 0 0
−1 −2 −1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
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Or, if we want to have the weights be proportional to 
distance from the center pixel, we could use Frei’s form, 
namely,  
 

  

€ 

d
dx

=

−1 0 1
− 2 0 2
−1 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

 
and  
 

  

€ 

d
dy

=

1 2 1
0 0 0
−1 − 2 −1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 

 
 
Similarly, if we want to form the first derivatives for the 
5x5 neighborhood case, we have to look at the 25 
neighborhood pixels. But we notice that for the x 
derivative, the center columns are just as described above 
and the outer columns have offsets of   

€ 

±2. Thus the x first 
derivative becomes 
 

  

€ 

d
dx

=

−2 −1 0 1 2
−2 −1 0 1 2
−2 −1 0 1 2
−2 −1 0 1 2
−2 −1 0 1 2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
 
and similarly the y first derivative becomes 
 

  

€ 

d
dy

=

2 2 2 2 2
1 1 1 1 1
0 0 0 0 0
−1 −1 −1 −1 −1
−2 −2 −2 −2 −2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
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Alternately if we wanted to use binomial coefficients for 
the weights, we would get 
 
 

  

€ 

d
dx

=

−2 −1 0 1 2
−8 −4 0 4 8
−12 −6 0 6 12
−8 −4 0 4 8
−2 −1 0 1 2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
 
and 
 

  

€ 

d
dy

=

2 8 12 8 2
1 4 6 4 1
0 0 0 0 0
−1 −4 −6 −4 −1
−2 −8 −12 −8 −2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
 
Directional Derivative 
 
We can form an arbitrary directional derivative by treating 
the x and y component derivatives as x and y vector 
components, so that the derivative in any direction is 
given by  
 

    

€ 

d
dθ

= cos(θ) d
dx

+ sin(θ) d
dy
 

 
which can be expressed in the 3x3 Prewitt form above as 
 

    

€ 

d
dθ

=

(−cos(θ) + sin(θ)) (+ sin(θ)) (+cos(θ) + sin(θ))
(−cos(θ)) 0 (sin(θ))

(−cos(θ) − sin(θ)) (−sin(θ)) (+cos(θ) − sin(θ))

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
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Examples of the 3x3 component and directional derivatives 
are as follows: 
 
 

Original Image 

 
 
 

Directional Derivatives 
(Degrees Clockwise From X axis) 

(0 = 

€ 

dP
dx

 and 90 = 

€ 

dP
dy

) 

 
 

0            45            90 

       
 

 
135           180           225 

       
 
 

270           315           360 
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Gradient Filter 
 
The Gradient operation is rather a strange one. One might 
think that the filter itself could be computed simply by 
forming the square root of the sum of squares of each of 

€ 

d
dx

 

and 

€ 

d
dy
, namely, 

 

  

€ 

d
dx
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

+
d
dy
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

 

 
But because of the squaring operation, all the coefficients 
will be positive and so the sum of the weights will not 
remain zero, which is a fundamental requirement for pure 
high pass filters. Thus, the proper way to compute the 
Gradient filtered image is to apply each derivative filter 
to the image to form the component filtered images, square 
these images (i.e. multiply them by themselves pixel-by-
pixel) add the two squared images and finally take the 
square root of the resulting sum (pixel-by-pixel). In other 
words, we go back to the original definition, namely, 
 

Gradient (Magnitude) Filtered Image = 
  

€ 

dP
dx

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

+
dP
dy

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

 

 
 
An example of a 3x3 Gradient filtered image follows: 
 
 

Original Image    Gradient Image 
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Laplacian Convolutions 
 
On the other hand, the Laplacian filter can be expressed 
directly, since it does not involve squaring. However, 
there are several forms of the Laplacian filter that can be 
created depending upon which neighborhood pixels are used. 
 
Lets start again for the 3x3 neighborhood, but use only the 
very closest 4 neighbors to the center pixel, i.e. the ones 
directly above and to the sides (forming a cross pattern). 
The Taylor expansion must now include the second 
derivatives and so the equations involved for the left, 
top, right, and bottom pixels become  
 
 

  

€ 

P(x −1,y) = P(x,y) − dP
dx

+ 0.5 d
2P
dx 2

 

 

  

€ 

P(x,y −1) = P(x,y) − dP
dy

+ 0.5 d
2P
dy 2

 

 

  

€ 

P(x +1,y) = P(x,y) +
dP
dx

+ 0.5 d
2P
dx 2

 

 

  

€ 

P(x −1,y +1) = P(x,y) − dP
dx

+
dP
dy

+ 0.5 d
2P
dx 2

+ 0.5 d
2P
dy 2

 

 
 
If we add these four equations, we notice that the first 
derivatives cancel out and we are left with  
 
 

Four neighbors = 
  

€ 

4P(x,y) +
d2P
dx 2

+
d2P
dy 2

 

 
By rearranging, we get 
 

Laplacian Filtered Image = 
  

€ 

d2P
dx 2

+
d2P
dy 2

 = four neighbors-

€ 

4P(x,y) 
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Or in filter form 
 

Laplacian Filter = 
  

€ 

d2

dx 2
+
d2

dy 2
 = 

  

€ 

0 1 0
1 −4 1
0 1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

 
However, we usually express this filter as its negative so 
that, when combined with the original image to produce 
sharpening, we get the polarity of the edges that looks the 
most realistic. Either way, the sum of the weights is still 
zero. Thus we have  
 

4-neighbor Laplacian Filter = 
  

€ 

d2

dx 2
+
d2

dy 2
 = 

  

€ 

0 −1 0
−1 4 −1
0 −1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

 
 
If we do the same with all 8 neighbors in the 3x3 
neighborhood, we get  
 

8-neighbor Laplacian Filter = 
  

€ 

d2

dx 2
+
d2

dy 2
 = 

  

€ 

−1 −1 −1
−1 8 −1
−1 −1 −1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

 
But this is identical to the high pass filter we generated 
from the 3x3 averaging low pass filter at the beginning 
(except for the factor of 1/9 in the latter, which is 
unnecessary as the sum of weights is zero).  
 
Another form for the Laplacian can be derived from 
evaluating the x and y component second derivatives 
directly and then adding them together. So if we look at 
the 9 neighborhood pixels column-by-column as we did for 
the first derivative case, but now include the second order 
terms, we get 
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€ 

P(x −1,y +1) = P(x,y) − dP
dx

+
dP
dy

+ 0.5 d
2P
dx 2

+ 0.5 d
2P
dy 2

 

 

  

€ 

P(x −1,y) = P(x,y) − dP
dx

+ 0.5 d
2P
dx 2

 

 
 

  

€ 

P(x −1,y −1) = P(x,y) − dP
dx

−
dP
dy

+ 0.5 d
2P
dx 2

+ 0.5 d
2P
dy 2

 

 

  

€ 

P(x,y +1) = P(x,y) +
dP
dy

+ 0.5 d
2P
dy 2

 

 
  

€ 

P(x,y) = P(x,y) 
 

  

€ 

P(x,y −1) = P(x,y) − dP
dy

+ 0.5 d
2P
dy 2

 

 

  

€ 

P(x +1,y +1) = P(x,y) +
dP
dx

+
dP
dy

+ 0.5 d
2P
dx 2

+ 0.5 d
2P
dy 2

 

 

  

€ 

P(x +1,y) = P(x,y) +
dP
dx

+ 0.5 d
2P
dx 2

 

 

  

€ 

P(x +1,y −1) = P(x,y) +
dP
dx

−
dP
dy

+ 0.5 d
2P
dx 2

+ 0.5 d
2P
dy 2

 

 
 
If we add the first 3 equations with the last 3 equations, 
we notice that all the first order x and y derivatives 
cancel out and we are left with  
 

sum of left and right column pixels = 
  

€ 

6P(x,y) + 3 d
2P
dx 2

+ 2 d
2P
dy 2
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If we then sum the middle column pixels leaving out the 
center pixel, the first order y derivatives cancel and we 
get  
 

top and bottom middle column pixels = 
  

€ 

2P(x,y) +
d2P
dy 2

 

 
If we subtract twice this last equation from the previous 
equation, we get  
 

6 side – 2*(top & bottom middle) pixels = 
  

€ 

2P(x,y) + 3 d
2P
dx 2

 

 
By rearranging, we get 
 

€ 

d2P
dx 2

 = (left & right columns – 2*middle top/bottom pixels)/3 

 
This implies that the x component second derivative filter 
is 
 

  

€ 

d2

dx 2
=
1
3

1 −2 1
1 −2 1
1 −2 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

 
 
Performing a similar analysis by rows, we get  
 

  

€ 

d2

dy 2
=
1
3

1 1 1
−2 −2 −2
1 1 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

 
 
We can now combine the two to form the Laplacian filter as  
 
 

Component Laplacian Filter = 
  

€ 

−
d2

dx 2
−
d2

dy 2
 = 

  

€ 

−2 1 −2
1 4 1
−2 1 −2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
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Here we have dropped the normalization factor of 1/3, since 
the sum of weights is zero. 
 
Performing the same analysis for a 5x5 neighborhood, we get  
 

Component Laplacian Filter = 
  

€ 

−
d2

dx 2
−
d2

dy 2
 = 

  

€ 

−4 −1 0 −1 −4
−1 2 3 2 −1
0 3 4 3 0
−1 2 3 2 −1
−4 −1 0 −1 −4

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
 
Examples of the 3x3 Laplacian filtered images follows: 
 
 

Original Image    4-neighbor Laplacian 

             
 
 

Component Laplacian    8-neighbor Laplacian 
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Non-Static Weight And Adaptive Convolutions 
 
 
Homomorphic Filters 
 
Another set of filters based upon the use of convolutions 
are the set of homomorphic filters. A dictionary definition 
of homomorphism is “a transformation of one set into 
another that preserves in the second set the relations 
between elements of the first”. In the case of filtering, 
what we are doing is applying a mathematical function to an 
image, then performing an averaging convolution, followed 
by applying the inverse transformation to the previous 
result. (The first two steps can also be considered jointly 
as a convolution whose weights are composed of the first 
mathematical function.) 
 
These filters are useful when trying to remove 
multiplicative or one-sided (either all positive (bright) 
noise or all negative (dark) noise) from an image. 
 
Four typical homomorphic filters are the geometric mean, 
the harmonic mean, the Lp mean and the contraharmonic mean. 
They are all homomorphic to the arithmetic mean or simple 
average, since that is the form of the convolution used in 
the middle step. Each of these is defined below. 
 

Geometric Mean Filtered Image = 
  

€ 

exp 1
N

ln
1

N

∑ P(x ± Δx,y ± Δy)( )⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 
 

Harmonic Mean Filtered Image = 

  

€ 

1
1
N

1
P(x ± Δx,y ± Δy)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1

N

∑
 

 
 

€ 

Lp Mean Filtered Image = 
  

€ 

pow 1
N

pow (P(x ± Δx,y ± Δy)), p( )
1

N

∑⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,−p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  
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Contraharmonic Filtered Image = 

  

€ 

pow (P(x ± Δx,y ± Δy)), p +1( )
1

N

∑

pow (P(x ± Δx,y ± Δy)), p( )
1

N

∑
 

 
 
 
Here N is the number of pixels in the neighborhood 
(convolution size), ln is the natural logarithm function, 
exp is the exponentiation function, pow is the function 
that raises the value of the pixel to some exponent and p 
is the exponent. 
 
For the Lp mean and contraharmonic mean, use positive 
values for p when the image has one-sided dark noise and 
use negative values for p when the image has one-sided 
bright noise. 
 
In ImageMagick, we would do the following for a 3x3 
neighborhood: 
 
 
Geometric Mean Filtering: 
 
convert infile -fx "ln(u+1)" \ 

-convolve "1,1,1,1,1,1,1,1,1" \ 
-fx "exp(u)-1" outfile 

 
Since –fx uses pixel values in the range of 0-1, and 
ln(1)=0 and ln(0)=-infinity, all results would be less than 
or equal to zero and not acceptable. Thus we add one before 
doing the ln and subtract one after doing the exp 
operations to keep the values for fx acceptable. 
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Harmonic Mean Filtering: 
 
convert infile -fx "1/(u+1)" \ 

-convolve "1,1,1,1,1,1,1,1,1" \ 
-fx "(1/u)-1" outfile 

 
Again we have added and subtracted one to avoid the case 
when a pixel value is zero since 1/0 will be infinite. 
 
 
Lp Mean Filtering: 
 
For positive values of p, 
 
convert infile -fx "pow(u,$p)" \ 

-convolve "1,1,1,1,1,1,1,1,1" \ 
-fx "pow(u,$ip)" outfile 

 
And for negative values of p, we can reverse the polarity 
of the image, use positive values of p and reverse the 
polarity back. This avoids the 1/0 problem again 
 
convert infile -negate -fx "pow(u,$p)" \ 

-convolve "1,1,1,1,1,1,1,1,1" \ 
-negate outfile 

 
 
 
Contraharmonic Filtering: 
 
For positive values of p, 
 
convert \ 

\( infile -fx "(pow((u),$p1))" \ 
-convolve "1,1,1,1,1,1,1,1,1" \) \ 
\( infile -fx "(pow((u),$p))" \ 
-convolve "1,1,1,1,1,1,1,1,1" \) \ 
-fx "(u/v)" outfile 

 
 



Page 27 

and for negative p, we use the same polarity reversal 
technique,  
 
convert \ 

\( infile -negate -fx "(pow((u),$p1))" \ 
-convolve "1,1,1,1,1,1,1,1,1" \) \ 
\( infile -negate -fx "(pow((u),$p))" \ 
-convolve "1,1,1,1,1,1,1,1,1" \) \ 
-fx "(u/v)" -negate outfile 
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Examples where we have applied these filters to an image 
containing one-sided, positive (bright only) noise follows 
and are compared to the arithmetic mean (simple averaging 
convolution) result. 
 
 

Noisy Image              Arithmetic Mean 

         
 
 

Geometric Mean              Harmonic Mean 

              
 
 
 

Lp Mean                 Contraharmonic Mean 
 (p=-2)                                (p=-2) 
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Here are similar examples for an image with more densely 
packed noise. 
 
 

Noisy Image              Arithmetic Mean 

         
 
 

Geometric Mean              Harmonic Mean 

         
 
 
 

Lp Mean                 Contraharmonic Mean 
 (p=-6)                                (p=-2) 
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Statistical Filters 
 
Another type of filter replaces each pixel in an image with 
some statistical measure involving the pixels in the local 
neighborhood of that pixel.  
 
Two filters in this category are the median filter and the 
Kth nearest neighbors filter. 
 
With the median filter, all the pixels in the neighborhood 
are ranked by intensity level and the center pixel is 
replaced by that pixel which is mid-way in ranking. Median 
filtering is generally one of the better filtering 
techniques. Nevertheless, it does cause some blurring, 
although less than a simple average. 
 
In ImageMagick, this is done as follows for a 3x3 
neighborhood (as indicated by the radius value of 1): 
 

convert infile –median 1 outfile 
 
With the Kth nearest neighbors filter, the intensity value 
of each pixel in the neighborhood is compared with that of 
the center pixel and only those k number of pixels whose 
values are closest to that of the center pixel are 
averaged.  
 
One example is the 1st nearest neighbor filter. It simply 
replaces each pixel in the image with that one pixel in its 
neighborhood whose value is closest to its own value. 
 
In ImageMagick, this is done as follows for a 3x3  
neighborhood (as indicated by the radius value of 1): 
 

convert infile –noise 1 outfile 
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Another filter simply throws out 2 pixels, one with the 
greatest positive difference from the center pixel and the 
other with the greatest negative difference from the center 
pixel and averages the rest. For a 3x3 neighborhood, this 
is the 7th nearest neighbor filter. 
 
In ImageMagick, this is a bit more difficult (and slow), 
but can be done as follows for a 3x3 neighborhood and K=7: 
 
pixels="aa=p[-1,-1]; ab=p[0,-1]; ac=p[+1,-1]; ba=p[-1,0]; 
bb=p[0,0]; bc=p[+1,0]; ca=p[-1,+1]; cb=p[0,+1]; 
cc=p[+1,+1];" 
tot="((aa)+(ab)+(ac)+(ba)+(bb)+(bc)+(ca)+(cb)+(cc))" 
min="min(min(min(min(min(min(min(min(aa,ab),ac),ba),bb),bc)
,ca),cb),cc)" 
max="max(max(max(max(max(max(max(max(aa,ab),ac),ba),bb),bc)
,ca),cb),cc)" 
convert infile -fx "$pixels u=($tot-$max-$min)/7" outfile 
 
Another statistical filter is the distance-weighted 
average. This is equivalent to a convolution whose 
coefficients (weights) change dynamically according to some 
measure of intensity difference (distance) from that of the 
center pixels. Typically, it excludes the center pixel from 
the average.  
 
Two variations are the linear distance weighted average and 
the inverse distance weighted average. In the former, the 
simple difference in intensity levels is used as the 
distance measure. Smaller differences are weighted higher. 
In the latter, the inverse of the difference is used as the 
distance measure, so that closer values are again weighted 
higher. 
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In ImageMagick, these are even slower, but can be done as 
follows for a 3x3 neighborhood: 
 
Linear Distance Weighting: 
 
ref=1.000001   #to avoid a divide by zero 
pixels="aa=p[-1,-1]; ab=p[0,-1]; ac=p[+1,-1]; ba=p[-1,0]; 
bb=p[0,0]; bc=p[+1,0]; ca=p[-1,+1]; cb=p[0,+1]; 
cc=p[+1,+1];" 
wts="waa=$ref-(abs(aa-bb)); wab=$ref-(abs(ab-bb)); 
wac=$ref-(abs(ac-bb)); wba=$ref-(abs(ba-bb)); wbc=$ref-
(abs(bc-bb)); wca=$ref-(abs(ca-bb)); wcb=$ref-(abs(cb-bb)); 
wcc=$ref-(abs(cc-bb));" 
sum="((waa*aa)+(wab*ab)+(wac*ac)+(wba*ba)+(wbc*bc)+(wca*ca)
+(wcb*cb)+(wcc*cc))" 
wtSum="(waa+wab+wac+wba+wbc+wca+wcb+wcc)" 
convert $tmpA -fx "$pixels $wts u=($sum/$wtSum)" $outfile 
 
 
Inverse Distance Weighting: 
 
pixels="aa=p[-1,-1]; ab=p[0,-1]; ac=p[+1,-1]; ba=p[-1,0]; 
bb=p[0,0]; bc=p[+1,0]; ca=p[-1,+1]; cb=p[0,+1]; 
cc=p[+1,+1];" 
wts="waa=(1/(abs(aa-bb)+(abs(aa-bb)==0))); wab=(1/(abs(ab-
bb)+(abs(ab-bb)==0))); wac=(1/(abs(ac-bb)+(abs(ac-
bb)==0))); wba=(1/(abs(ba-bb)+(abs(ba-bb)==0))); 
wbc=(1/(abs(bc-bb)+(abs(bc-bb)==0))); wca=(1/(abs(ca-
bb)+(abs(ca-bb)==0))); wcb=(1/(abs(cb-bb)+(abs(cb-
bb)==0))); wcc=(1/(abs(cc-bb)+(abs(cc-bb)==0)));" 
sum="((waa*aa)+(wab*ab)+(wac*ac)+(wba*ba)+(wbc*bc)+(wca*ca)
+(wcb*cb)+(wcc*cc))" 
wtSum="(waa+wab+wac+wba+wbc+wca+wcb+wcc)" 
convert $tmpA -fx "$pixels $wts u=($sum/$wtSum)" $outfile 
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Here are examples of these filters compared to the simple 
average (arithmetic mean) for a 3x3 neighborhood. 
 
 

Noisy Image             Arithmetic Mean 

         
 

 
Median               1st NN                7th NN  

     
 

 
Linear Distance Wt       Inverse Distance Wt 
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Adaptive Filters 
 
Adaptive filters typically use some statistical measure to 
determine where there is noise in the image and filter more 
where there is noise and less or none where there is no 
noise. 
 
One such noise reduction filter applies a median filter to 
an image. Then for every pixel in the image, it gets the 
absolute difference between the image and the median 
filtered version. If the difference is larger than some 
threshold value, it takes the median value, otherwise, it 
keeps the original image value. This technique has the 
advantage over applying the median filter everywhere in 
that it will not blur the image where it thinks there is no 
noise. It generally works well in case where the noise is 
sparse or isolated. 
 
In ImageMagick, this can be achieved by creating an image 
using the median filter and another by thresholding the 
absolute difference between the original image and the 
median filtered image.  
 
For a threshold value of 10% in a 3x3 neighborhood, we have  
 
convert infile -median 1 tmpfile1 
convert infile tmpfile1 \ 

-compose difference -composite \ 
-threshold 10% tmpfile2 

convert infile tmpfile1 tmpfile2 \ 
-compose src -composite outfile 

 
 
An example of this follows. However, one must look very 
closely to see differences, for example, in the lines in 
her hatband and to a lesser extent in her eyes and mouth. 
 
A good way to view such subtle differences is to display 
the two images alternating in moderately rapid succession. 
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Anthony Thyssen has written a script to do this alternating 
display of image. It can be found at 
  
http://www.imagemagick.org/Usage/scripts/flicker_cmp 
 
 

Noisy Image 

 
 
 

Median Alone             Adaptive Median 

         
 
 
 
Another adaptive filter can be used either to sharpen an 
image or extract edges. It does the following. First it 
computes a local mean image, M, using a uniform (simple 
average) convolution. Then it computes a local standard 
deviation image, S, using the input image  and the local 
mean image. Next it computes a gain image, G, using the 
local standard deviation image and  the global standard 
deviation of the image. Finally, it combines the local mean 
image and the product of the local gain  image times the 
difference between the input image and the local  mean 
image. This can be expressed as follows. 



Page 36 

 
S = M + G*(I–M)  for sharpening 

 
and 
 

E = G*(I–M) for edge extraction 
 
where 
 

  

€ 

G =
f * std

S+ f * std /mg( )
 

 
and 
 
 
S is the local standard deviation image 
std is the global standard deviation of the image 
f is a multiplying constant to amplify std 
mg is a maximum gain limiting constant 
 
Note that (I-M) is just a high pass filter formed from the 
low pass averaging filter, M. 
 
 
Examples of this adaptive filter follow: 
 
 
Original image         Sharpening        Edge Extraction 
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Adaptive filters can also be used to enhance the contrast 
and brightness of an image. The next filter does this using 
a concept that is very similar to the adaptive sharpening 
filter above. It computes both a local mean and standard 
deviation filtered image, except, rather than doing it at 
every pixel, it does in for blocks of pixels and then skips 
to the next block. This generates reduces size images which 
are then re-expanded smoothly back to the original image 
size. It then uses the expanded standard deviation image to 
compute a gain image that will be multiplied by the 
difference between the input image and the expanded mean 
image. The mean image, a desired mean value and the product 
of the gain times the difference between the input image 
and the mean image are then mixed together to produce the 
resulting contrast and brightness enhanced image. This can 
be expressed as follows: 
 

R = f*dmean + (1-f)*b*M + G*(I–M)   
 
where  
 
R is the resulting enhanced image 
M is the re-expanded mean image 
S is the re-expanded standard deviation image 
I is the original image 
f is the mixing fraction, 0 <= f <= 1 
 
dmean is the desired mean and is computed from the image’s 
global mean times a brightening factor, b. 
 

dmean = b * mean 
 
 
and 
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G is the gain image, which is computed as 
 

  

€ 

G =
dstd

S+ dstd
mg

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
 

 
 
where 
 
dstd is the desired standard deviation and is computed from 
the image’s global standard deviation times a contrast 
factor, c. 
 

dstd = c * std 
 
 
 
An example of this adaptive filter follows: 
 
 
 

Original                   Enhanced 
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Using ImageMagick, this picture would be processed as 
follows, where the block averaging size was 12.5% of the 
full picture, m=0.5, b=2, c=1.5 and mg=5 
 
convert infile -filter box -resize 12.5% tmpMfile 
 
convert \( infile infile -compose multiply -composite \ 
-filter box -resize 12.5% \) \ 
\( tmpMfile tmpMfile -compose multiply -composite \) \ 
+swap -compose minus -composite -fx "sqrt(u)" tmpSfile 
 
convert tmpMfile -resize 800% tmpMEfile 
 
convert tmpSfile -resize 800% tmpSEfile 
 
dmean=`echo "scale=5; 2 * $mean / 1" | bc` 
 
dstd=`echo "scale=5; 1.5 * $std / 1" | bc` 
 
fdmean=`echo "scale=5; 0.5 * $dmean / 1" | bc` 
 
dsdmg=`echo "scale=5; $dstd / 5" | bc` 
 
bf=`echo "scale=5; 2 * (1 - 0.5) / 1" | bc` 
 
gain="gn=($dstd)/(u[2]+($dsdmg));" 
 
convert infile tmpMEfile tmpSEfile \ 
-fx "$gain ($fdmean)+($bf*v)+(gn*(u-v))" outfile 
 
 
 
 
 
 


