
Page 1

DIGITAL IMAGE FILTERING

By
Fred Weinhaus

Traditional (Static Weight) Convolution

One method of filtering an image is to apply a convolution
operation to the image to achieve: blurring, sharpening,
edge extraction or noise removal.

The action of a convolution is simply to multiply the
pixels in the neighborhood of each pixel in the image by a
set of static weights and then replace the pixel by the sum
of the product. In order to prevent the overall brightness
of the image from changing, the weights are either designed
to sum to unity or the convolution is followed by a
normalization operation, which divides the result by the
sum of the weights. In simple terms, perform a weighted
average in the neighborhood of each pixel and replace the
pixel’s value by the average.

Thus, the filter is generated by providing a set of weights
to apply to the corresponding pixels in a given size
neighborhood. The set of weights make up what is called the
convolution kernel and is typically represented in a table
or matrix-like form, where the position in the table or
matrix corresponds to the appropriate pixel in the
neighborhood. Such a convolution kernel (or filter) is
typically a square of odd dimensions so that, when applied,
the resulting image does not shift a half pixel relative to
the original image. The general form for a 3x3 convolution
kernel looks as follows:

€

w1 w2 w3
w4 w5 w6
w7 w8 w8

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Page 2

or if the weights are not designed to sum to unity, then as

€

1
sumw

w1 w2 w3
w4 w5 w6
w7 w8 w8

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

where sumw=(w1+w2+w3+w4+w5+w6+w7+w8+w9).

In systems such as ImageMagick, normalization is done
automatically as part of the convolution. Thus, the
multiply by 1/sumw is not needed. But note that this factor
must be taken into account if this filter is mixed with
other filters to generate a more complex convolution, as
will be done later.

In ImageMagick, convolution kernels (filters) are
represented as 1D comma separate lists and are created from
the 2D kernel by appending each row to the end of the
previous one. Thus in ImageMagick, the convolution kernel
would be expressed as

Convert infile –convolve "w1,w2,w3,w4,w5,w6,w7,w8,w9" outfile

Uniform Weight Convolutions

The simplest convolution kernel or filter is of size 3x3
with equal weights and is represented as follows:

€

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 =

€

1
9

€

1 1 1
1 1 1
1 1 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 = low pass filter.

This filter produces a simple average (or arithmetic mean)
of the 9 nearest neighbors of each pixel in the image. It
is one of a class of what are known as low pass filters.
They pass low frequencies in the image or equivalently pass
long wavelengths in the image, i.e. slow variations in
image intensity. Conversely, they remove short wavelengths
in the image, which correspond to abrupt changes in image

Page 3

intensity, i.e. edges. Thus we get blurring. Also, because
it is replacing each pixel with an average of the pixels in
its local neighborhood, one can understand why it tends to
blur the image. Blurring is typical of low pass filters.

The opposite of a low pass filter is a high pass filter. It
passes only short wavelengths, i.e. where there are abrupt
changes in intensity and removes long wavelengths, i.e.
where the image intensity is varying slowly. Thus when
applied to an image, it shows only the edges in the image.

High pass filtering of an image can be achieved by the
application of a low pass filter to the image and
subsequently subtraction of the low pass filtered result
from the image.

In abbreviated terms, this is H = I – L, where H = high
pass filtered image, I = original image and L = low pass
filtered image. We can express this in terms of the filters
(convolution kernels) by recognizing that this equation is
equivalent to the following:

h

€

⊗I = i

€

⊗I - l

€

⊗I

where h, i and l are the high pass, identity and low pass
filter (convolution kernels), respectively and

€

⊗ means
convolution (i.e. multiply each neighborhood pixel by it
corresponding weight and sum up the products).

The identity filter is that convolution kernel which when
applied to the image leaves the image unchanged. Therefore,

i =

€

0 0 0
0 1 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 = identity kernel.

Page 4

Thus if we combine the identity and low pass filter kernels
above as specified, we get

h =

€

0 0 0
0 1 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 -

€

1
9

€

1 1 1
1 1 1
1 1 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 = high pass filter.

After subtraction of terms, this becomes

h =

€

1
9

€

−1 −1 −1
−1 8 −1
−1 −1 −1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 = high pass filter,

where again we can ignore the one-ninth factor, since the
sum of weights is actually zero. This property that the
weights sum to zero is typical of pure high pass filters.

Now, if we want to sharpen the image rather than just
extract edges, we can do so by blending or mixing the
original image with the high pass filtered image. In
abbreviated form, this is S = (1-f)*I + f*H, where S is the
sharpened image, I is the original image, H is the high
pass filtered image and f is a fraction between 0 and 1.
When f=0, S=I and when f=1, S=H. A typcal choice for
sharpening is to use something inbetween, say, f=0.5.

In terms of the convolution kernel, this becomes

s

€

⊗I = (1-f)*i

€

⊗I + f*h

€

⊗I

or

s = (1-f)*I + f*h

Page 5

For the high pass filter above, this becomes

s = (1-f)

€

0 0 0
0 1 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 + f

€

1
9

€

−1 −1 −1
−1 8 −1
−1 −1 −1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

which produces

s =

€

1
9

€

− f − f − f
− f (9 − f) − f
− f − f − f

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

But we can also derive this by recalling that H = I – L.
Thus the equation, S = (1-f)*I + f*H, becomes
S = (1-f)*I + f*(I – L). By rearranging, it can be
expressed as S = I – f*L, which is much simpler.

If we now express this in terms of the filters, it becomes
s*I = i*I – f*l*I, so that the filter is

s =

€

0 0 0
0 1 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 - f *

€

1
9

€

1 1 1
1 1 1
1 1 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

which again produces

s =

€

1
9

€

− f − f − f
− f (9 − f) − f
− f − f − f

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Page 6

An example using the above 3x3 uniform weight (averaging)
convolution kernels as filters follows:

Original Image Low Pass Filtered Image

Sharpened Image (f = 0.5) High Pass Filtered Image

For filter or kernel size 5x5, the basic filters become

i =

€

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

and

l =

€

1
25

€

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Page 7

so that

h =

€

1
25

€

−1 −1 −1 −1 −1
−1 −1 −1 −1 −1
−1 −1 24 −1 −1
−1 −1 −1 −1 −1
−1 −1 −1 −1 −1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

The result of using this larger filter will be that the low
pass filtered image is blurrier than for the 3x3 case and
the high pass filtered image will have thicker edges.

Non-Uniform (Binomial) Weight Convolutions

Another example of a low pass filter is the binomial
filter. It is called that because its weights are formed
from the coefficients of the binomial series. Pascal’s
Triangle is a good way to visualize and extract these
coefficients.

 1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4 1
 1 5 10 10 5 1
 1 6 15 20 15 6 1
 1 7 21 35 35 21 7 1

The 1D coefficients are just the rows. To construct each
successive row, you sum the two numbers in the row
immediately above the position you want.

See http://en.wikipedia.org/wiki/Pascal%27s_triangle for
more details.

Page 8

The first two odd sized series are:

1 2 1

1 4 6 4 6

These form the basis for the 3x3 and 5x5 binomial filters.

Unlike the averaging filter above whose weights are all the
same and have a level profile, the weights of the binomial
filter are biggest at the center and taper down towards the
outer areas of the neighborhood. The profile of the
binomial filter has a bell shape and looks as follows:

To create the 2D low pass binomial filter, you form the
outer product of the row with its corresponding column. In
simple terms take the row and multiply each element in it
by the first value in the row. Then take the row and
multiply each element in it by the second value in the row.
Repeat this until you have multiplied the row by every
element in the row. Then stack each of these resulting rows
to make a square table or matrix. For example, the 3x3
kernel is generated as

€

1∗ 1 2 1[]

€

2 ∗ 1 2 1[]

€

1∗ 1 2 1[]

Page 9

When multiplied and stacked, it becomes

l =

€

1
16

€

1 2 1
2 4 2
1 2 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Similarly, the 5x5 low pass binomial filter becomes

l =

€

1
256

€

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

To get the high pass filter, we use the same formula as
before, namely, h = i – l. Thus for the 3x3 case, we get

h =

€

1
16

€

−1 −2 −1
−2 12 −2
−1 −2 −1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

and the sharpening filter becomes

s =

€

1
16

€

− f −2 f − f
−2 f (16 − f) −2 f
− f −2 f − f

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Page 10

An example using the above 3x3 binomial convolution kernels
as filters is shown below. Results are not too much
different than those for the 3x3 averaging filter.

Original Image Low Pass Filtered Image

Sharpened Image (f = 0.5 High Pass Filtered Image

Derivative Convolutions

Another class of high pass filters is generated from the
digital equivalents of the mathematical derivative
operation. These include the Gradient and the Laplacian
filters.

From calculus, if one knows the value of a function,

€

P(x,y)
at some location (x,y) and want to know its value at a very
close by point which differs from (x,y) by

€

Δx,Δy(), one can
use the Taylor Expansion to compute it. This is expressed
to second order as:

Page 11

€

P(x ± Δx,y ± Δy) = P(x,y) ± Δx dP
dx

± Δy dP
dy

+ 0.5(Δx)2 d
2P
dx 2

+ 0.5(Δy)2 d
2P
dy 2

This can be interpreted as follows:

€

P(x,y) is the value of a pixel in the digital picture (image)
and x and y are the horizontal and vertical coordinates of
the pixel.

€

P(x ± Δx,y ± Δy) is some pixel in the local neighborhood of the
center pixel

€

P(x,y) and

€

Δx,Δy() are the integer offsets of the
neighborhood pixel from the center pixel. In a 3x3
neighborhood, the offsets are

€

±1. In a 5x5 neighborhood,
the closest pixels will have offsets of

€

±1 and the outer
pixels in the neighborhood will have offsets of

€

±2.

The terms

€

dP
dx

 and

€

dP
dy

 are the x and y first derivative

filtered images and the terms

€

d2P
dx 2

 and

€

d2P
dy 2

 are the x and y

second derivative filtered images.

The definitions for the Gradient and Laplacian filtered
images are as follows:

Gradient (Magnitude) Filtered Image =

€

dP
dx

⎛
⎝
⎜

⎞
⎠
⎟

2

+
dP
dy

⎛

⎝
⎜

⎞

⎠
⎟

2

Laplacian Filtered Image =

€

d2P
dx 2

+
d2P
dy 2

To compute the Gradient filtered image, we use only the
first order terms, so that the Taylor Expansion becomes:

€

P(x ± Δx,y ± Δy) = P(x,y) ± Δx dP
dx

± Δy dP
dy

Page 12

Lets look at the 8 pixels in the neighborhood of

€

P(x,y).

The offsets for each pixel in the neighborhood can be
expressed in table or matrix form as:

€

±Δx,±Δy() =

€

(−1,+1) (0,+1) (+1,+1)
(−1,0) (0,0) (+1,0)
(−1,−1) (0,−1) (+1,−1)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

So we can now express the values for each of neighborhood
pixels in terms of the center pixel working top to bottom
and left to right (i.e. column-by-column) as:

€

P(x −1,y +1) = P(x,y) − dP
dx

+
dP
dy

€

P(x −1,y) = P(x,y) − dP
dx

€

P(x −1,y −1) = P(x,y) − dP
dx

−
dP
dy

€

P(x,y +1) = P(x,y) +
dP
dy

€

P(x,y) = P(x,y)

€

P(x,y −1) = P(x,y) − dP
dy

€

P(x +1,y +1) = P(x,y) +
dP
dx

+
dP
dy

€

P(x +1,y) = P(x,y) +
dP
dx

€

P(x +1,y −1) = P(x,y) +
dP
dx

−
dP
dy

€

Page 13

Lets start by looking at the middle column (equations 4, 5
and 6 above). We note that none of them include

€

dP
dx

.

Next look at the left column of neighborhood pixels
(equations 1, 2 and 3 above). If we add these up, we get

Left column of 3 pixels =

€

3P(x,y) − dP
dx

Similarly for the right column of 3 pixels (equations 7, 8
and 9 above), we get

Right column of 3 pixels =

€

3P(x,y) +
dP
dx

If we subtract the left column from the right column we get

(Right column of pixels) – (Left column of pixels) =

€

dP
dx

This equation tells us that the left and right columns are
the only pixels that make up this derivative. Thus the
pixels in the center column must each have a value of zero
as none of these pixels contribute to the derivative.

This equation along with the equation for the left column
of pixels tells us that the sign of the left column must be
negative. Similarly, this equation along with the equation
for the right column of pixels tells us that the sign of
the right column must be positive.

Nothing in these equations tells us what exact values to
use for the weights of the left and right columns, except
they must be equal and opposite sign across a row. The
simplest assumption is to weight them equally.

Page 14

Consequently, the x first derivative filter can be
expressed as

€

d
dx

=

−1 0 1
−1 0 1
−1 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

In a similar analysis, the y first derivative filter
becomes

€

d
dy

=

1 1 1
0 0 0
−1 −1 −1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

These are the two (component) first derivative filters. The
x derivative extracts vertical edges and the y derivative
extracts horizontal edges. These equations are known as
Prewitt’s form.

As we are free choose weights within columns of the x
derivative and rows of the y derivative, we could use
binomial coefficients instead of uniform coefficients.
Doing this produces Sobel’s form, namely,

€

d
dx

=

−1 0 1
−2 0 2
−1 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

and

€

d
dy

=

1 2 1
0 0 0
−1 −2 −1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Page 15

Or, if we want to have the weights be proportional to
distance from the center pixel, we could use Frei’s form,
namely,

€

d
dx

=

−1 0 1
− 2 0 2
−1 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

and

€

d
dy

=

1 2 1
0 0 0
−1 − 2 −1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Similarly, if we want to form the first derivatives for the
5x5 neighborhood case, we have to look at the 25
neighborhood pixels. But we notice that for the x
derivative, the center columns are just as described above
and the outer columns have offsets of

€

±2. Thus the x first
derivative becomes

€

d
dx

=

−2 −1 0 1 2
−2 −1 0 1 2
−2 −1 0 1 2
−2 −1 0 1 2
−2 −1 0 1 2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

and similarly the y first derivative becomes

€

d
dy

=

2 2 2 2 2
1 1 1 1 1
0 0 0 0 0
−1 −1 −1 −1 −1
−2 −2 −2 −2 −2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Page 16

Alternately if we wanted to use binomial coefficients for
the weights, we would get

€

d
dx

=

−2 −1 0 1 2
−8 −4 0 4 8
−12 −6 0 6 12
−8 −4 0 4 8
−2 −1 0 1 2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

and

€

d
dy

=

2 8 12 8 2
1 4 6 4 1
0 0 0 0 0
−1 −4 −6 −4 −1
−2 −8 −12 −8 −2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Directional Derivative

We can form an arbitrary directional derivative by treating
the x and y component derivatives as x and y vector
components, so that the derivative in any direction is
given by

€

d
dθ

= cos(θ) d
dx

+ sin(θ) d
dy

which can be expressed in the 3x3 Prewitt form above as

€

d
dθ

=

(−cos(θ) + sin(θ)) (+ sin(θ)) (+cos(θ) + sin(θ))
(−cos(θ)) 0 (sin(θ))

(−cos(θ) − sin(θ)) (−sin(θ)) (+cos(θ) − sin(θ))

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Page 17

Examples of the 3x3 component and directional derivatives
are as follows:

Original Image

Directional Derivatives
(Degrees Clockwise From X axis)

(0 =

€

dP
dx

 and 90 =

€

dP
dy

)

0 45 90

135 180 225

270 315 360

Page 18

Gradient Filter

The Gradient operation is rather a strange one. One might
think that the filter itself could be computed simply by
forming the square root of the sum of squares of each of

€

d
dx

and

€

d
dy
, namely,

€

d
dx
⎛
⎝
⎜

⎞
⎠
⎟

2

+
d
dy
⎛

⎝
⎜

⎞

⎠
⎟

2

But because of the squaring operation, all the coefficients
will be positive and so the sum of the weights will not
remain zero, which is a fundamental requirement for pure
high pass filters. Thus, the proper way to compute the
Gradient filtered image is to apply each derivative filter
to the image to form the component filtered images, square
these images (i.e. multiply them by themselves pixel-by-
pixel) add the two squared images and finally take the
square root of the resulting sum (pixel-by-pixel). In other
words, we go back to the original definition, namely,

Gradient (Magnitude) Filtered Image =

€

dP
dx

⎛
⎝
⎜

⎞
⎠
⎟

2

+
dP
dy

⎛

⎝
⎜

⎞

⎠
⎟

2

An example of a 3x3 Gradient filtered image follows:

Original Image Gradient Image

Page 19

Laplacian Convolutions

On the other hand, the Laplacian filter can be expressed
directly, since it does not involve squaring. However,
there are several forms of the Laplacian filter that can be
created depending upon which neighborhood pixels are used.

Lets start again for the 3x3 neighborhood, but use only the
very closest 4 neighbors to the center pixel, i.e. the ones
directly above and to the sides (forming a cross pattern).
The Taylor expansion must now include the second
derivatives and so the equations involved for the left,
top, right, and bottom pixels become

€

P(x −1,y) = P(x,y) − dP
dx

+ 0.5 d
2P
dx 2

€

P(x,y −1) = P(x,y) − dP
dy

+ 0.5 d
2P
dy 2

€

P(x +1,y) = P(x,y) +
dP
dx

+ 0.5 d
2P
dx 2

€

P(x −1,y +1) = P(x,y) − dP
dx

+
dP
dy

+ 0.5 d
2P
dx 2

+ 0.5 d
2P
dy 2

If we add these four equations, we notice that the first
derivatives cancel out and we are left with

Four neighbors =

€

4P(x,y) +
d2P
dx 2

+
d2P
dy 2

By rearranging, we get

Laplacian Filtered Image =

€

d2P
dx 2

+
d2P
dy 2

 = four neighbors-

€

4P(x,y)

Page 20

Or in filter form

Laplacian Filter =

€

d2

dx 2
+
d2

dy 2
 =

€

0 1 0
1 −4 1
0 1 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

However, we usually express this filter as its negative so
that, when combined with the original image to produce
sharpening, we get the polarity of the edges that looks the
most realistic. Either way, the sum of the weights is still
zero. Thus we have

4-neighbor Laplacian Filter =

€

d2

dx 2
+
d2

dy 2
 =

€

0 −1 0
−1 4 −1
0 −1 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

If we do the same with all 8 neighbors in the 3x3
neighborhood, we get

8-neighbor Laplacian Filter =

€

d2

dx 2
+
d2

dy 2
 =

€

−1 −1 −1
−1 8 −1
−1 −1 −1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

But this is identical to the high pass filter we generated
from the 3x3 averaging low pass filter at the beginning
(except for the factor of 1/9 in the latter, which is
unnecessary as the sum of weights is zero).

Another form for the Laplacian can be derived from
evaluating the x and y component second derivatives
directly and then adding them together. So if we look at
the 9 neighborhood pixels column-by-column as we did for
the first derivative case, but now include the second order
terms, we get

Page 21

€

P(x −1,y +1) = P(x,y) − dP
dx

+
dP
dy

+ 0.5 d
2P
dx 2

+ 0.5 d
2P
dy 2

€

P(x −1,y) = P(x,y) − dP
dx

+ 0.5 d
2P
dx 2

€

P(x −1,y −1) = P(x,y) − dP
dx

−
dP
dy

+ 0.5 d
2P
dx 2

+ 0.5 d
2P
dy 2

€

P(x,y +1) = P(x,y) +
dP
dy

+ 0.5 d
2P
dy 2

€

P(x,y) = P(x,y)

€

P(x,y −1) = P(x,y) − dP
dy

+ 0.5 d
2P
dy 2

€

P(x +1,y +1) = P(x,y) +
dP
dx

+
dP
dy

+ 0.5 d
2P
dx 2

+ 0.5 d
2P
dy 2

€

P(x +1,y) = P(x,y) +
dP
dx

+ 0.5 d
2P
dx 2

€

P(x +1,y −1) = P(x,y) +
dP
dx

−
dP
dy

+ 0.5 d
2P
dx 2

+ 0.5 d
2P
dy 2

If we add the first 3 equations with the last 3 equations,
we notice that all the first order x and y derivatives
cancel out and we are left with

sum of left and right column pixels =

€

6P(x,y) + 3 d
2P
dx 2

+ 2 d
2P
dy 2

Page 22

If we then sum the middle column pixels leaving out the
center pixel, the first order y derivatives cancel and we
get

top and bottom middle column pixels =

€

2P(x,y) +
d2P
dy 2

If we subtract twice this last equation from the previous
equation, we get

6 side – 2*(top & bottom middle) pixels =

€

2P(x,y) + 3 d
2P
dx 2

By rearranging, we get

€

d2P
dx 2

 = (left & right columns – 2*middle top/bottom pixels)/3

This implies that the x component second derivative filter
is

€

d2

dx 2
=
1
3

1 −2 1
1 −2 1
1 −2 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Performing a similar analysis by rows, we get

€

d2

dy 2
=
1
3

1 1 1
−2 −2 −2
1 1 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

We can now combine the two to form the Laplacian filter as

Component Laplacian Filter =

€

−
d2

dx 2
−
d2

dy 2
 =

€

−2 1 −2
1 4 1
−2 1 −2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Page 23

Here we have dropped the normalization factor of 1/3, since
the sum of weights is zero.

Performing the same analysis for a 5x5 neighborhood, we get

Component Laplacian Filter =

€

−
d2

dx 2
−
d2

dy 2
 =

€

−4 −1 0 −1 −4
−1 2 3 2 −1
0 3 4 3 0
−1 2 3 2 −1
−4 −1 0 −1 −4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Examples of the 3x3 Laplacian filtered images follows:

Original Image 4-neighbor Laplacian

Component Laplacian 8-neighbor Laplacian

Page 24

Non-Static Weight And Adaptive Convolutions

Homomorphic Filters

Another set of filters based upon the use of convolutions
are the set of homomorphic filters. A dictionary definition
of homomorphism is “a transformation of one set into
another that preserves in the second set the relations
between elements of the first”. In the case of filtering,
what we are doing is applying a mathematical function to an
image, then performing an averaging convolution, followed
by applying the inverse transformation to the previous
result. (The first two steps can also be considered jointly
as a convolution whose weights are composed of the first
mathematical function.)

These filters are useful when trying to remove
multiplicative or one-sided (either all positive (bright)
noise or all negative (dark) noise) from an image.

Four typical homomorphic filters are the geometric mean,
the harmonic mean, the Lp mean and the contraharmonic mean.
They are all homomorphic to the arithmetic mean or simple
average, since that is the form of the convolution used in
the middle step. Each of these is defined below.

Geometric Mean Filtered Image =

€

exp 1
N

ln
1

N

∑ P(x ± Δx,y ± Δy)()⎛

⎝
⎜

⎞

⎠
⎟

Harmonic Mean Filtered Image =

€

1
1
N

1
P(x ± Δx,y ± Δy)
⎛

⎝
⎜

⎞

⎠
⎟

1

N

∑

€

Lp Mean Filtered Image =

€

pow 1
N

pow (P(x ± Δx,y ± Δy)), p()
1

N

∑⎛

⎝
⎜

⎞

⎠
⎟ ,−p

⎛

⎝
⎜

⎞

⎠
⎟

Page 25

Contraharmonic Filtered Image =

€

pow (P(x ± Δx,y ± Δy)), p +1()
1

N

∑

pow (P(x ± Δx,y ± Δy)), p()
1

N

∑

Here N is the number of pixels in the neighborhood
(convolution size), ln is the natural logarithm function,
exp is the exponentiation function, pow is the function
that raises the value of the pixel to some exponent and p
is the exponent.

For the Lp mean and contraharmonic mean, use positive
values for p when the image has one-sided dark noise and
use negative values for p when the image has one-sided
bright noise.

In ImageMagick, we would do the following for a 3x3
neighborhood:

Geometric Mean Filtering:

convert infile -fx "ln(u+1)" \

-convolve "1,1,1,1,1,1,1,1,1" \
-fx "exp(u)-1" outfile

Since –fx uses pixel values in the range of 0-1, and
ln(1)=0 and ln(0)=-infinity, all results would be less than
or equal to zero and not acceptable. Thus we add one before
doing the ln and subtract one after doing the exp
operations to keep the values for fx acceptable.

Page 26

Harmonic Mean Filtering:

convert infile -fx "1/(u+1)" \

-convolve "1,1,1,1,1,1,1,1,1" \
-fx "(1/u)-1" outfile

Again we have added and subtracted one to avoid the case
when a pixel value is zero since 1/0 will be infinite.

Lp Mean Filtering:

For positive values of p,

convert infile -fx "pow(u,$p)" \

-convolve "1,1,1,1,1,1,1,1,1" \
-fx "pow(u,$ip)" outfile

And for negative values of p, we can reverse the polarity
of the image, use positive values of p and reverse the
polarity back. This avoids the 1/0 problem again

convert infile -negate -fx "pow(u,$p)" \

-convolve "1,1,1,1,1,1,1,1,1" \
-negate outfile

Contraharmonic Filtering:

For positive values of p,

convert \

\(infile -fx "(pow((u),$p1))" \
-convolve "1,1,1,1,1,1,1,1,1" \) \
\(infile -fx "(pow((u),$p))" \
-convolve "1,1,1,1,1,1,1,1,1" \) \
-fx "(u/v)" outfile

Page 27

and for negative p, we use the same polarity reversal
technique,

convert \

\(infile -negate -fx "(pow((u),$p1))" \
-convolve "1,1,1,1,1,1,1,1,1" \) \
\(infile -negate -fx "(pow((u),$p))" \
-convolve "1,1,1,1,1,1,1,1,1" \) \
-fx "(u/v)" -negate outfile

Page 28

Examples where we have applied these filters to an image
containing one-sided, positive (bright only) noise follows
and are compared to the arithmetic mean (simple averaging
convolution) result.

Noisy Image Arithmetic Mean

Geometric Mean Harmonic Mean

Lp Mean Contraharmonic Mean
 (p=-2) (p=-2)

Page 29

Here are similar examples for an image with more densely
packed noise.

Noisy Image Arithmetic Mean

Geometric Mean Harmonic Mean

Lp Mean Contraharmonic Mean
 (p=-6) (p=-2)

Page 30

Statistical Filters

Another type of filter replaces each pixel in an image with
some statistical measure involving the pixels in the local
neighborhood of that pixel.

Two filters in this category are the median filter and the
Kth nearest neighbors filter.

With the median filter, all the pixels in the neighborhood
are ranked by intensity level and the center pixel is
replaced by that pixel which is mid-way in ranking. Median
filtering is generally one of the better filtering
techniques. Nevertheless, it does cause some blurring,
although less than a simple average.

In ImageMagick, this is done as follows for a 3x3
neighborhood (as indicated by the radius value of 1):

convert infile –median 1 outfile

With the Kth nearest neighbors filter, the intensity value
of each pixel in the neighborhood is compared with that of
the center pixel and only those k number of pixels whose
values are closest to that of the center pixel are
averaged.

One example is the 1st nearest neighbor filter. It simply
replaces each pixel in the image with that one pixel in its
neighborhood whose value is closest to its own value.

In ImageMagick, this is done as follows for a 3x3
neighborhood (as indicated by the radius value of 1):

convert infile –noise 1 outfile

Page 31

Another filter simply throws out 2 pixels, one with the
greatest positive difference from the center pixel and the
other with the greatest negative difference from the center
pixel and averages the rest. For a 3x3 neighborhood, this
is the 7th nearest neighbor filter.

In ImageMagick, this is a bit more difficult (and slow),
but can be done as follows for a 3x3 neighborhood and K=7:

pixels="aa=p[-1,-1]; ab=p[0,-1]; ac=p[+1,-1]; ba=p[-1,0];
bb=p[0,0]; bc=p[+1,0]; ca=p[-1,+1]; cb=p[0,+1];
cc=p[+1,+1];"
tot="((aa)+(ab)+(ac)+(ba)+(bb)+(bc)+(ca)+(cb)+(cc))"
min="min(min(min(min(min(min(min(min(aa,ab),ac),ba),bb),bc)
,ca),cb),cc)"
max="max(max(max(max(max(max(max(max(aa,ab),ac),ba),bb),bc)
,ca),cb),cc)"
convert infile -fx "$pixels u=($tot-$max-$min)/7" outfile

Another statistical filter is the distance-weighted
average. This is equivalent to a convolution whose
coefficients (weights) change dynamically according to some
measure of intensity difference (distance) from that of the
center pixels. Typically, it excludes the center pixel from
the average.

Two variations are the linear distance weighted average and
the inverse distance weighted average. In the former, the
simple difference in intensity levels is used as the
distance measure. Smaller differences are weighted higher.
In the latter, the inverse of the difference is used as the
distance measure, so that closer values are again weighted
higher.

Page 32

In ImageMagick, these are even slower, but can be done as
follows for a 3x3 neighborhood:

Linear Distance Weighting:

ref=1.000001 #to avoid a divide by zero
pixels="aa=p[-1,-1]; ab=p[0,-1]; ac=p[+1,-1]; ba=p[-1,0];
bb=p[0,0]; bc=p[+1,0]; ca=p[-1,+1]; cb=p[0,+1];
cc=p[+1,+1];"
wts="waa=$ref-(abs(aa-bb)); wab=$ref-(abs(ab-bb));
wac=$ref-(abs(ac-bb)); wba=$ref-(abs(ba-bb)); wbc=$ref-
(abs(bc-bb)); wca=$ref-(abs(ca-bb)); wcb=$ref-(abs(cb-bb));
wcc=$ref-(abs(cc-bb));"
sum="((waa*aa)+(wab*ab)+(wac*ac)+(wba*ba)+(wbc*bc)+(wca*ca)
+(wcb*cb)+(wcc*cc))"
wtSum="(waa+wab+wac+wba+wbc+wca+wcb+wcc)"
convert $tmpA -fx "$pixels $wts u=($sum/$wtSum)" $outfile

Inverse Distance Weighting:

pixels="aa=p[-1,-1]; ab=p[0,-1]; ac=p[+1,-1]; ba=p[-1,0];
bb=p[0,0]; bc=p[+1,0]; ca=p[-1,+1]; cb=p[0,+1];
cc=p[+1,+1];"
wts="waa=(1/(abs(aa-bb)+(abs(aa-bb)==0))); wab=(1/(abs(ab-
bb)+(abs(ab-bb)==0))); wac=(1/(abs(ac-bb)+(abs(ac-
bb)==0))); wba=(1/(abs(ba-bb)+(abs(ba-bb)==0)));
wbc=(1/(abs(bc-bb)+(abs(bc-bb)==0))); wca=(1/(abs(ca-
bb)+(abs(ca-bb)==0))); wcb=(1/(abs(cb-bb)+(abs(cb-
bb)==0))); wcc=(1/(abs(cc-bb)+(abs(cc-bb)==0)));"
sum="((waa*aa)+(wab*ab)+(wac*ac)+(wba*ba)+(wbc*bc)+(wca*ca)
+(wcb*cb)+(wcc*cc))"
wtSum="(waa+wab+wac+wba+wbc+wca+wcb+wcc)"
convert $tmpA -fx "$pixels $wts u=($sum/$wtSum)" $outfile

Page 33

Here are examples of these filters compared to the simple
average (arithmetic mean) for a 3x3 neighborhood.

Noisy Image Arithmetic Mean

Median 1st NN 7th NN

Linear Distance Wt Inverse Distance Wt

Page 34

Adaptive Filters

Adaptive filters typically use some statistical measure to
determine where there is noise in the image and filter more
where there is noise and less or none where there is no
noise.

One such noise reduction filter applies a median filter to
an image. Then for every pixel in the image, it gets the
absolute difference between the image and the median
filtered version. If the difference is larger than some
threshold value, it takes the median value, otherwise, it
keeps the original image value. This technique has the
advantage over applying the median filter everywhere in
that it will not blur the image where it thinks there is no
noise. It generally works well in case where the noise is
sparse or isolated.

In ImageMagick, this can be achieved by creating an image
using the median filter and another by thresholding the
absolute difference between the original image and the
median filtered image.

For a threshold value of 10% in a 3x3 neighborhood, we have

convert infile -median 1 tmpfile1
convert infile tmpfile1 \

-compose difference -composite \
-threshold 10% tmpfile2

convert infile tmpfile1 tmpfile2 \
-compose src -composite outfile

An example of this follows. However, one must look very
closely to see differences, for example, in the lines in
her hatband and to a lesser extent in her eyes and mouth.

A good way to view such subtle differences is to display
the two images alternating in moderately rapid succession.

Page 35

Anthony Thyssen has written a script to do this alternating
display of image. It can be found at

http://www.imagemagick.org/Usage/scripts/flicker_cmp

Noisy Image

Median Alone Adaptive Median

Another adaptive filter can be used either to sharpen an
image or extract edges. It does the following. First it
computes a local mean image, M, using a uniform (simple
average) convolution. Then it computes a local standard
deviation image, S, using the input image  and the local
mean image. Next it computes a gain image, G, using the
local standard deviation image and  the global standard
deviation of the image. Finally, it combines the local mean
image and the product of the local gain  image times the
difference between the input image and the local  mean
image. This can be expressed as follows.

Page 36

S = M + G*(I–M) for sharpening

and

E = G*(I–M) for edge extraction

where

€

G =
f * std

S+ f * std /mg()

and

S is the local standard deviation image
std is the global standard deviation of the image
f is a multiplying constant to amplify std
mg is a maximum gain limiting constant

Note that (I-M) is just a high pass filter formed from the
low pass averaging filter, M.

Examples of this adaptive filter follow:

Original image Sharpening Edge Extraction

Page 37

Adaptive filters can also be used to enhance the contrast
and brightness of an image. The next filter does this using
a concept that is very similar to the adaptive sharpening
filter above. It computes both a local mean and standard
deviation filtered image, except, rather than doing it at
every pixel, it does in for blocks of pixels and then skips
to the next block. This generates reduces size images which
are then re-expanded smoothly back to the original image
size. It then uses the expanded standard deviation image to
compute a gain image that will be multiplied by the
difference between the input image and the expanded mean
image. The mean image, a desired mean value and the product
of the gain times the difference between the input image
and the mean image are then mixed together to produce the
resulting contrast and brightness enhanced image. This can
be expressed as follows:

R = f*dmean + (1-f)*b*M + G*(I–M)

where

R is the resulting enhanced image
M is the re-expanded mean image
S is the re-expanded standard deviation image
I is the original image
f is the mixing fraction, 0 <= f <= 1

dmean is the desired mean and is computed from the image’s
global mean times a brightening factor, b.

dmean = b * mean

and

Page 38

G is the gain image, which is computed as

€

G =
dstd

S+ dstd
mg

⎛
⎝
⎜ ⎞

⎠
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

where

dstd is the desired standard deviation and is computed from
the image’s global standard deviation times a contrast
factor, c.

dstd = c * std

An example of this adaptive filter follows:

Original Enhanced

Page 39

Using ImageMagick, this picture would be processed as
follows, where the block averaging size was 12.5% of the
full picture, m=0.5, b=2, c=1.5 and mg=5

convert infile -filter box -resize 12.5% tmpMfile

convert \(infile infile -compose multiply -composite \
-filter box -resize 12.5% \) \
\(tmpMfile tmpMfile -compose multiply -composite \) \
+swap -compose minus -composite -fx "sqrt(u)" tmpSfile

convert tmpMfile -resize 800% tmpMEfile

convert tmpSfile -resize 800% tmpSEfile

dmean=`echo "scale=5; 2 * $mean / 1" | bc`

dstd=`echo "scale=5; 1.5 * $std / 1" | bc`

fdmean=`echo "scale=5; 0.5 * $dmean / 1" | bc`

dsdmg=`echo "scale=5; $dstd / 5" | bc`

bf=`echo "scale=5; 2 * (1 - 0.5) / 1" | bc`

gain="gn=($dstd)/(u[2]+($dsdmg));"

convert infile tmpMEfile tmpSEfile \
-fx "$gain ($fdmean)+($bf*v)+(gn*(u-v))" outfile

