
3DROTATE 
 
 
Consider the picture as if it were on a horizontal 
rectangle locate on the Z=0 plane with its upper left 
corner at the origin. This means that points on the picture 
have values of (X,Y,0) 
 
Consider the perspective transformation as if it were the 
process of capturing a picture by a frame camera located a 
distance Zc=f above the picture, where f is the focal 
length of the camera, which is determined by the fov (field 
of view) defined by the diagonal dimension of the image. So 
that 
 
tan(fov/2) = (sqrt(width^2 + height^2)) / (2 * f) 
 
or 
 
f = diag / (2 * tan(pef * fov / 2))  
 
where fov = the equivalent fov for 35mm picture frame whose 
dimensions are 36mm x 24mm. Thus 
 
fov = 180 * atan(36/24) / pi (which is approx. 56 degrees) 
 
and we have added pef into the equation as the perspective 
exaggeration factor, thus increasing or decreasing the 
effective fov used to calculate f. 
 
Note that the camera is looking straight down along the –Z 
direction. 
 
The perspective equations in 3D are defined as: 
 
(x,y,f) = M (X',Y',Z'-Zc)  
 
which includes an implicit divide of the first two terms by 
the third. 
 



where M is the camera orientation matrix, which is the 
identity matrix with M22=-1. Because the camera is looking 
straight down, M is a reflection about Z. That is the 
camera sees coordinates with +Z values as closer and with -
Z values as further away. 
 
Thus M is: 
 
M0 = (1 0 0) 
M1 = (0 1 0) 
M2 = (0 0 -1) 
 
Also 
 
(X’,Y’,Z’) = R (X,Y,0) are the rotated points determined by 
the composite rotation matrix from the three rotations, 
pan, tilt, and roll (in any order). We define these three 
rotation angles as: 
 
pan = right hand positive rotation about Y axis 
tilt = right hand negative rotation about X axis 
roll = right hand positive rotation about Z axis 
 
Thus the three rotation matrices become: 
 
Rp0 = (cospan 0 sinpan) 
Rp1 = (0 1 0) 
Rp2 = (-sinpan 0 cospan) 
 
Rt0 = (1 0 0) 
Rt1 = (0 costilt sintilt) 
Rt2 = (0 -sintilt costilt) 
 
Rr0 = (cosroll sinroll 0) 
Rr1 = (-sinroll cosroll 0) 
Rr2 = (0 0 1) 
 
 
 
 



So now we can express the perspective equation as: 
 
(x,y,f) = M R (X,Y,0) 
 
But to avoid a divide by zero in the implicit divide (in 
the final equations below), we must convert (X,Y,0) to 
(X,Y,1). To do this we note that  
 
(X,Y,0) = (X,Y,1) – (0,0,1) 
 
Thus the perspective equations become: 
 
(x,y,f) = M {R [(X,Y,1) – (0,0,1)] – (0,0,Zc)} 
 
But 
 
R [(X,Y,1) – (0,0,1)] = R [II (X,Y,1) – S (X,Y,1)] 
 
where I is the identity matrix 
 
II0 = (1 0 0) 
II1 = (0 1 0) 
II2 = (0 0 1) 
 
And S is a matrix of all zeros except for S22=1 
 
S0 = (0 0 0) 
S1 = (0 0 0) 
S2 = (0 0 1) 
 
So that combining we get 
 
IMS = (II – S) 
 
Or  
 
IMS0 = (1 0 0) 
IMS1 = (0 1 0) 
IMS2 = (0 0 0) 
 



So the perspective equations become: 
 
(x,y,f) = M {R IMS (X,Y,1) – D (X,Y,1)} 
 
where D is a matrix of all zeros except for D22=Zc=f. 
 
Thus the perspective equations become: 
 
(x,y,f) = M [(R IMS) – D] (X,Y,1) = M T (X,Y,1) 
 
where  
 
(R IMS) is just the Rotation matrix R with its third column 
all zeros and T is then simply R with its third column just 
(0, 0, -f). 
 
Thus 
 
T0 = (R00 R01 0) 
T1 = (R10 R11 0) 
T2 = (R20 R21 –f) 
 
Now we want to convert (x,y,f) to (u,v,1) pixels for output 
coordinates and we want to convert (X,Y,1) to (i,j,1) 
pixels for input coordinates. 
 
These last two transformations are just affine 
transformations, namely: 
 
(x,y,f) = A (u,v,1) 
 
where  
 
x = sx * (u – du) 
y = -sy * (v – dv)  (as lines increase downward) 
 
where we do the offset before the scaling to get results to 
come out right. 
 
 



and  
 
(X,Y,1) = B (i,j,1) 
 
where  
 
X = (i – di) 
y = - (j – dj)  (as lines increase downward) 
 
(we will ignore a change of scale in the input) 
 
So that B is just a matrix of offsets 
 
B0=(1 0 -di) 
B1=(0 -1 dj) 
B2=(0 0 1) 
 
where 
 
idx = user supplied input image i offset relative to the 
picture center 
idy = user supplied input image j offset relative to the 
picture center 
 
di = idx + (width – 1)/2 
dj = idy + (height – 1)/2 
 
An similarly we have 
 
A0 = (sx 0 sx*(-du-di)) 
A1 = (0 -sy sy*(dv+dj)) 
A2 = (0 0 -f) 
 
where 
 
du = odx = user supplied output image u offset relative to 
the picture center  
dv = ody = user supplied output image v offset relative to 
the picture center 
 



sx is the x output scale factor (defined by user supplied 
zoom) 
sy is the y output scale factor (defined by user supplied 
zoom) 
 
sx = sy = 1/zoom for zoom positive 
sx = sy = - zoom for zoom negative 
 
So that the perspective transformation equations become 
 
A (u,v,1) = M T B (i,j,1) 
 
or  
 
(u,v,1) = A-1 M T B (i,j,1) 
 
where A-1 is the inverse matrix of A. 
 
We can compute A-1 simply enough manually from the adjoint 
matrix (or the matrix of cofactors of A) divided by the 
determinant of A. 
 
Thus we get 
 
A-10 = (1/sx 0 -A02/(sx * f)) 
A-11 = (0 -1/sy A12/(sy * f)) 
A-12 = (0 0 1/f) 
 
But as M is also a nearly empty matrix, we might as well do 
the matrix multiply A-1 M manually to get 
 
A-1M0 = (1/sx 0 A02/(sx * f)) 
A-1M1 = (0 -1/sy -A12/(sy * f)) 
A-1M2 = (0 0 -1/f) 
 
 
 
 
 
 



Thus the perspective transformation equation becomes: 
 
(u,v,1) = P (i,j,1) 
 
where 
 
P = A-1 M T B 
 
So we just need to do the matrix multiplies on these four 
matrices. 
 
Then we invert P to get Q = P-1 to get the inverse 
transformation matrix. This again can be achieved from the 
adjoint method. 
 
 
 


