
3DROTATE

Consider the picture as if it were on a horizontal
rectangle locate on the Z=0 plane with its upper left
corner at the origin. This means that points on the picture
have values of (X,Y,0)

Consider the perspective transformation as if it were the
process of capturing a picture by a frame camera located a
distance Zc=f above the picture, where f is the focal
length of the camera, which is determined by the fov (field
of view) defined by the diagonal dimension of the image. So
that

tan(fov/2) = (sqrt(width^2 + height^2)) / (2 * f)

or

f = diag / (2 * tan(pef * fov / 2))

where fov = the equivalent fov for 35mm picture frame whose
dimensions are 36mm x 24mm. Thus

fov = 180 * atan(36/24) / pi (which is approx. 56 degrees)

and we have added pef into the equation as the perspective
exaggeration factor, thus increasing or decreasing the
effective fov used to calculate f.

Note that the camera is looking straight down along the –Z
direction.

The perspective equations in 3D are defined as:

(x,y,f) = M (X',Y',Z'-Zc)

which includes an implicit divide of the first two terms by
the third.

where M is the camera orientation matrix, which is the
identity matrix with M22=-1. Because the camera is looking
straight down, M is a reflection about Z. That is the
camera sees coordinates with +Z values as closer and with -
Z values as further away.

Thus M is:

M0 = (1 0 0)
M1 = (0 1 0)
M2 = (0 0 -1)

Also

(X’,Y’,Z’) = R (X,Y,0) are the rotated points determined by
the composite rotation matrix from the three rotations,
pan, tilt, and roll (in any order). We define these three
rotation angles as:

pan = right hand positive rotation about Y axis
tilt = right hand negative rotation about X axis
roll = right hand positive rotation about Z axis

Thus the three rotation matrices become:

Rp0 = (cospan 0 sinpan)
Rp1 = (0 1 0)
Rp2 = (-sinpan 0 cospan)

Rt0 = (1 0 0)
Rt1 = (0 costilt sintilt)
Rt2 = (0 -sintilt costilt)

Rr0 = (cosroll sinroll 0)
Rr1 = (-sinroll cosroll 0)
Rr2 = (0 0 1)

So now we can express the perspective equation as:

(x,y,f) = M R (X,Y,0)

But to avoid a divide by zero in the implicit divide (in
the final equations below), we must convert (X,Y,0) to
(X,Y,1). To do this we note that

(X,Y,0) = (X,Y,1) – (0,0,1)

Thus the perspective equations become:

(x,y,f) = M {R [(X,Y,1) – (0,0,1)] – (0,0,Zc)}

But

R [(X,Y,1) – (0,0,1)] = R [II (X,Y,1) – S (X,Y,1)]

where I is the identity matrix

II0 = (1 0 0)
II1 = (0 1 0)
II2 = (0 0 1)

And S is a matrix of all zeros except for S22=1

S0 = (0 0 0)
S1 = (0 0 0)
S2 = (0 0 1)

So that combining we get

IMS = (II – S)

Or

IMS0 = (1 0 0)
IMS1 = (0 1 0)
IMS2 = (0 0 0)

So the perspective equations become:

(x,y,f) = M {R IMS (X,Y,1) – D (X,Y,1)}

where D is a matrix of all zeros except for D22=Zc=f.

Thus the perspective equations become:

(x,y,f) = M [(R IMS) – D] (X,Y,1) = M T (X,Y,1)

where

(R IMS) is just the Rotation matrix R with its third column
all zeros and T is then simply R with its third column just
(0, 0, -f).

Thus

T0 = (R00 R01 0)
T1 = (R10 R11 0)
T2 = (R20 R21 –f)

Now we want to convert (x,y,f) to (u,v,1) pixels for output
coordinates and we want to convert (X,Y,1) to (i,j,1)
pixels for input coordinates.

These last two transformations are just affine
transformations, namely:

(x,y,f) = A (u,v,1)

where

x = sx * (u – du)
y = -sy * (v – dv) (as lines increase downward)

where we do the offset before the scaling to get results to
come out right.

and

(X,Y,1) = B (i,j,1)

where

X = (i – di)
y = - (j – dj) (as lines increase downward)

(we will ignore a change of scale in the input)

So that B is just a matrix of offsets

B0=(1 0 -di)
B1=(0 -1 dj)
B2=(0 0 1)

where

idx = user supplied input image i offset relative to the
picture center
idy = user supplied input image j offset relative to the
picture center

di = idx + (width – 1)/2
dj = idy + (height – 1)/2

An similarly we have

A0 = (sx 0 sx*(-du-di))
A1 = (0 -sy sy*(dv+dj))
A2 = (0 0 -f)

where

du = odx = user supplied output image u offset relative to
the picture center
dv = ody = user supplied output image v offset relative to
the picture center

sx is the x output scale factor (defined by user supplied
zoom)
sy is the y output scale factor (defined by user supplied
zoom)

sx = sy = 1/zoom for zoom positive
sx = sy = - zoom for zoom negative

So that the perspective transformation equations become

A (u,v,1) = M T B (i,j,1)

or

(u,v,1) = A-1 M T B (i,j,1)

where A-1 is the inverse matrix of A.

We can compute A-1 simply enough manually from the adjoint
matrix (or the matrix of cofactors of A) divided by the
determinant of A.

Thus we get

A-10 = (1/sx 0 -A02/(sx * f))
A-11 = (0 -1/sy A12/(sy * f))
A-12 = (0 0 1/f)

But as M is also a nearly empty matrix, we might as well do
the matrix multiply A-1 M manually to get

A-1M0 = (1/sx 0 A02/(sx * f))
A-1M1 = (0 -1/sy -A12/(sy * f))
A-1M2 = (0 0 -1/f)

Thus the perspective transformation equation becomes:

(u,v,1) = P (i,j,1)

where

P = A-1 M T B

So we just need to do the matrix multiplies on these four
matrices.

Then we invert P to get Q = P-1 to get the inverse
transformation matrix. This again can be achieved from the
adjoint method.

