
Bilinear Image Warping 

 

 

 

Consider the following diagram: 
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We desire to warp the rectangle into the quadrilateral. 

 

Now the equations that describe transforming the corners of 

the rectangle to the corresponding corners of the 

quadrilateral are defined by the following “1.5 order” 

polynomial: 
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So for any corner, we substitute the rectangle coordinates 

U,V into this equation and it gives us the X,Y coordinates 



of the corresponding corner provided we know the 

coefficients. 

 

Alternately, one can compute the coefficients given the 

four corner U,V coordinates in the rectangle (which are 

found from its dimensions) and the corresponding four X,Y 

vertices of the quadrilateral. 

 

The corners of the rectangle of dimensions NU x NV are: 

 

Pt 0: (0,0) 

Pt 1: (NU-1,0) 

Pt 2: (NU-1,NV-1) 

Pt 3: (0,NV-1) 

 

Given corresponding coordinates for the quadrilateral as: 

 

Pt 0: (X0,Y0) 

Pt 1: (X1,Y1) 

Pt 2: (X2,Y2) 

Pt 3: (X3,Y3) 

 

If we substitutue Pt 0 into equation 1), we get: 
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If we substitute Pt 1 into equation 1), we get: 
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If we substitute Pt 3 into equation 1), we get: 
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If we substitute Pt 2 into equation 1), we get: 
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So as long as we know the coefficients, this works fine for 

projection individual points from the rectangle to the 

quadrilateral. But when there is scale change, especially 

magnification, so that the quadrilateral is much larger, 

then projecting each pixel in the rectangle will leave 

holes in the quadrilateral. 

 

Thus we want to perform an inverse (or reverse) 

transformation so that we sequence through every (X,Y) 

pixel in the quadrilateral and find its corresponding (U,V) 

coordinate in the rectangle. Then interpolate the 

neighboring values and put the resultant value at the 

specified (X,Y) location in the quadrilateral. 

 

To do this we have to find the inverse of equation 1). 

However, this is not trivial as the polynomial is higher 

than first degree. It has the cross term in it, but no 

second order term in either U or V. That is why it is 

sometimes called a 1.5 order polynomial equation. 

 

So we desire to invert this equation into a form as 

follows: 
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In order to do this we can solve for either U or V in 

equation 1a), then substitute that back into equation 1b). 

It turns out that the former approach is better than the 

latter as will be explained later. 

 

Lets do the better one, namely, solve for U from equation 

1a). 
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Substituting this into equation 1b), rationalizing the 

denominators and combining like powers of V, we find the 

following quadratic equation that must be solved to get V 

 

 

4)   

� 

AV
2

+ BV + C = 0 

 

 

where 

 

  

� 

A = b
2
a
3
! b

3
a
2( ) 

 

  

� 

C = C
1

+ b
1
X ! a

1
Y( )   

where  

 

  

� 

C
1

= b
0
a
1
! b

1
a
0( ) is a constant independent of X or Y 

 

 

  

� 

B = B1+ b
3
X ! a

3
Y( ) 

where 

 

  

� 

B1 = b
0
a
3
! b

3
a
0( ) + b

2
a
1
! b

1
a
2( )  is a constant independent of 

X or Y 



 

 

The solution to 4) is of course, 
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This has two solutions, but it turns out that the plus sign 

is the correct solution here. 

 

 

Thus equations 4) and 5) properly invert the 1.5 order 

polynomial and satisfy equation 2) 

 

 

Here is an example starting with a 256 x 256 image of the 

mandril which has a grid superimposed. 

 

 
 

 

Using quadrilateral coordinates of: 

 



X0=52 

Y0=0 

 

X1=228 

Y1=46 

 

X2=255 

Y2=229 

 

X3=0 

Y3=246 

 

 

The bilinear warp using equations 4) and 5) produces the 

following image: 

 

 
 

 

 

Note that a property of the bilinear warp is that lines 

parallel to the coordinate axes of the input rectangle 

image remain straight lines in the output quadrilateral 

image. Thus the quadrilateral boundary edges are straight 

and the horizontal and vertical grid lines from the 



rectangle remain straight lines in the quadrilateral. 

However, one or both diagonals may end up curved depending 

upon the transformation. They are not necessarily preserved 

as straight line. 

 

 

Now we could have chosen to solve for V in equation 1a), 

resulting in 
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which then leads to a quadratic equation of the form 
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And the solution of equation 7) is  
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where the minus sign is the correct choice. 

 

However, the quality of the result for the same 

quadrilateral vertices is not as good as for the previous 

result: 

 

 

 
 

 

 

Looking carefully, one can see a vertical line through the 

center of the eye on the right side of the image (which 

actually extends down the image but is less noticeable). 

This can be accentuated by reducing the precision of the 

set of (a,b) coefficients as is shown here: 

 

 



 
 

 

 

This seems to occur from a degeneracy in equation 6). By 

examining the coefficients of equation 6), when X=U, V 

results a constant independent of U. It is not clear how 

universal this issue is. Further study is warranted. 


